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Abstract

Tropical forests have a significant impact on rainfall patterns at a continental scale,

thereby influencing water supply for energy generation of hydropower plants. I develop

a method to value this ecosystem service using an econometric climate model that

connects tropical deforestation with rainfall. As an application, I estimate the impact

that Amazon deforestation has on the power generation capacity of the Teles Pires

hydropower plant in Brazil, one of the ten largest plants in a country where hydropower

is the main source of energy. In an ex-post analysis, I map the currently deforested

regions in the Amazon with the highest restoration values for the hydroelectric. In an

ex-ante analysis, I map the potential cost of deforesting Indigenous Territories. The

results provide evidence of the importance of the ecosystem services of tropical forests

to the energy sector.
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1 Introduction

Tropical forests are responsible for a significant share of the rainfall in South America,

Africa, and Asia (Spracklen et al., 2012; Lawrence and Vandecar, 2015), locations with a

high presence and/or a high potential for hydropower plants (HPs) (IEA, 2021; Fan et al.,

2022; Anderson et al., 2018). This rainfall supply mechanism extends even to hydropower

plants located hundreds or thousands of kilometers away from the forests (Spracklen et al.,

2012). Deforestation, therefore, has a continental-scale impact on hydropower, which is

a renewable energy source that can significantly increase energy capacity, particularly in

developing countries (WWAP, 2012; Agency, 2009; IEA, 2021). Valuing ecosystem services,

such as rainfall supply, composes an agenda of accounting for the natural capital in economic

models and is a key step in designing environmental protection policies and nature-based

solutions (Ferraro et al., 2020; Johnson et al., 2021; Dasgupta, 2021). Nonetheless, assessing

the value of nature remains challenging due to the complex interactions and externality

effects from climate and ecosystem models that need to be connected with models from

other areas of study, such as energy generation.

In this paper, I develop a data-driven approach to estimate the value of tropical forests

for energy generation of hydropower plants (HPs) through a chain of effects: deforestation

affects rainfall, rainfall affects river flow, and river flow affects energy generation. The value

of the forgone energy in a HP caused by a counterfactual deforestation scenario allows me

to measure the value of different regions of the forest for the HP. This chain of effects starts

with the crucial role that tropical forests play in continental rainfall, where the transpiration

of trees contributes to increase atmospheric humidity and subsequent downwind rainfall

(Wunderling et al., 2022). To model this mechanism, I develop an econometric climate

model that connects a deforestation scenario with rainfall.

I build atmospheric trajectories that cover the forest using data on wind speed and

direction. Along the trajectories, I quantify the extent of forest exposure encountered by

each trajectory. I then estimate the effect that this measure of upwind exposure to the

forest has on downwind rainfall. The estimated parameters allow me to build, for each

possible scenario of deforestation, a counterfactual rainfall measure. The identification of

the climate model relies on short-run variation of wind speed and direction compounded

along continental trajectories of humidity transport. In the next step, I estimate the effect

of rainfall on the river flow with a predictive model and compute the effect of river flow on

the energy generation potential with a log-log specification based on physics (Stickler et al.,

2013). The forgone energy value from reduced rainfall can be interpreted as the willingness

to pay for forest conservation and/or restoration. Finally, I map the regions of the forest with
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the highest values for the HP, which are the regions that are most visited by the atmospheric

trajectories upwind of the HP. This methodology not only quantifies the willingness to pay

for conservation and restoration but also provides targeted mapping for conservation and

restoration efforts tailored to individual HPs.

In a first application, I investigate the impact that the deforestation of the Amazon

Rainforest since the 1980’s has on the energy generation capacity of the Teles Pires HP in

Brazil. As 64% of Brazil’s installed capacity comes from hydropower,1 the country’s electrical

matrix is particularly susceptible to rainfall changes. Teles Pires, located in the state of Mato

Grosso, stands as one of the ten largest hydropower plants in Brazil and its water supply is

heavily influenced by deforestation due to its proximity to the Amazon Rainforest. It started

its operation in 2015 and in 2021 entered a special stand still program with the National

Development Bank (BNDES) to temporarily suspend the payment of financing agreements

due to a water crisis.

I find that the Amazon deforestation generates an average decrease of rainfall of 13%

and 8% of the historical average in the state of Mato Grosso in the dry and wet seasons,

respectively. For the specific location of the Teles Pires plant, this decrease ranges between

6% and 10%. The impact of this decrease in rainfall amounts to an average decrease in

potential energy generation between 2.5% and 10%, with extreme scenarios exceeding 17%.

For the hydropower plant, this decline in energy generation translates to an average annual

loss of approximately USD 21 million per year, representing around 10% of the HP’s annual

revenue. This application shows how the model can be used to compute ex-post effects of

deforestation.

In a second application, I compute an ex-ante effect of deforestation. The Indigenous

Territory of Mundurucu is located both downstream and upwind of Teles Pires, thus the

territory provides water to the HP via atmospheric circulation and is affected by river flow

changes caused by the plant. In this second counterfactual exercise, I estimate the value of the

forest in the Mundurucu territory for Teles Pires. In this counterfactual scenario, I completely

deforest the Indigenous Territory and find that the Mundurucu territory provides to Teles

Pires an average positive externality via rainfall of USD 2.3 million per year, representing

approximately 1% of the hydropower plant’s annual revenue.

This paper adds to an agenda of valuing ecosystem services (Ferraro et al., 2020; Johnson

et al., 2021; Dasgupta, 2021), that for tropical forests are often constrained to valuing the

forests as a carbon sink (Franklin Jr and Pindyck, 2018; Araujo et al., 2020). By incorpo-

rating the externality effect of forests on rainfall, this research expands the understanding

1Brazilian Energy Balance 2020, available at epe.gov.br/pt/publicacoes-dados-abertos/

publicacoes/balanco-energetico-nacional-2020, page 20, accessed 01/20/2023.
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of the cost-benefit analysis of deforestation policies studied so far (Souza-Rodrigues, 2019;

Jung et al., 2022; Simonet et al., 2019; Assunção et al., 2022, 2019, 2020; Araujo et al.,

2023). This paper also relates with studies that connect the mechanism of forest and rainfall

with agriculture (Leite-Filho et al., 2021; Araujo, 2023; Grosset et al., 2023) and human

consumption (Núñez et al., 2006).

The methodology can be applied in different regions with the presence of tropical forests,

such as South America, Indonesia, and Africa. Since the effect of deforestation on precipita-

tion goes beyond borders, this model can be used to measure externalities among countries,

much in the same way that transboundary water treaties and agreements address the use of

rivers (Sigman, 2002; Ambec et al., 2013; Olmstead and Sigman, 2015). The climate model

can also be applied in a range of different sectors, such as, agriculture and water supply

for human consumption, and therefore be used to study allocation of scarce water resources

across competing sectors (Olmstead, 2020). Tropical forests are instruments to counteract

rainfall changes caused by global warming (Seneviratne et al., 2012). Measuring the impor-

tance of the forest is useful to plan conservation/restoration policies to lessen the impacts

of changes in rainfall studied in the literature of adaptation to climate change in the agri-

cultural sector (Skidmore, 2022) and economic growth (Damania et al., 2020; Barrios et al.,

2010).

Methodologically, the climate model relates to a long standing literature connecting trop-

ical forest and climate. The transpiration and water recycling mechanism was first explored

by Salati et al. (1979). Pioneering studies connecting atmospheric circulation and the water

cycle showed how the long-range atmospheric transport of water affects continental rainfall

using global climate models (Shukla et al., 1990; Nobre et al., 1991), followed by regional

calibrated models (Zemp et al., 2017; Wunderling et al., 2022; Staal et al., 2023, 2018).

Spracklen et al. (2012) introduced a single estimation equation connecting the forest, at-

mospheric trajectories, and rainfall, which is most closely related to my method. Recent

estimated models includes Smith et al. (2023) and Cui et al. (2022).

This paper also contributes to the existing literature on hydropower, which has primarily

focused on shifts of energy sources (Crampes and Moreaux, 2001; Genc and Thille, 2011; Eyer

and Wichman, 2018; Qiu et al., 2023) and entry of multiple HPs in the same basin (Moita,

2008). On the intersection of deforestation and hydropower, Stickler et al. (2013) studies

effects of deforestation on the flow of a basin and its effect on energy generation using general

computable models and Guo et al. (2007) studies local interactions of forest conservation

and hydroelectricity. This paper departs from this literature by uncovering another layer of

externalities when studying HPs in regions affected by tropical forests, explicitly isolating

the variation that identifies the effect of deforestation on energy generation. On the effects of
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changes in climate in energy supply, the literature has focused on rising temperatures from

climate change and their consequences (Bogmans et al., 2017; Rosende et al., 2019; Ciscar

and Dowling, 2014). This paper depart from this literature by exploring a mechanism that

has continental/local impacts on rainfall.

Additionally, this study contributes to the literature of environmental injustice (Mohai

et al., 2009; Hernandez-Cortes and Meng, 2023). Communities downstream of hydropower

plants may experience adverse effects due to changes in river flow 2 and surrounding commu-

nities may not benefit in the long-run (De Faria et al., 2017). Concomitantly, depending on

the patterns of atmospheric circulation, the same affected communities may also contribute

to the HPs’ energy generation by preserving the native vegetation of their territory and sup-

plying water through atmospheric circulation. This scenario creates a double environmental

injustice where people may not be compensated for the positive externality they generate via

one ecosystem service - providing rainfall - while bearing the burden of a negative externality

via another ecosystem service - changes in river flow.

The remainder of this article is organized as follows: Section 2 describes the climate

model; Section 3 describes the connection between rainfall and energy; Section 4 estimates

the impact of deforestation on energy generation; Section 5 estimates the value of the ecosys-

tem service of the Amazon forest; Section 6 estimates the value of the Indigenous Territory

of Mundurucu to the HP; Section 7 concludes.

2 Climate Model: Deforestation and Rainfall

Tropical forests are an important part of the water cycle. The evaporation of the water in

the oceans creates humid air parcels that are transported to continental lands. Along its

trajectory, the air loses humidity via precipitation. But, on the ground, trees’ transpiration

recharges the air’s humidity contributing to rainfall downwind. Thus, trees affect rainfall

(Salati et al., 1979; Wunderling et al., 2022). The presence of tropical forest can affect rainfall

in locations that are hundreds and even thousands of kilometers away from the forest, a

phenomenon known in the literature as flying rivers (Marengo et al., 2018). An implication

of this mechanism is that deforestation decreases rainfall. The Amazon rainforest has seen

a steady decline in its forest cover in the last 4 decades (Figure 1 A), and as a consequence,

there is also a steady decline in precipitation both in the dry season (Figure 1 B) and wet

season (Figure 1 C) in the state of Mato Grosso, which will be the location of the application

developed in this paper.

2As of 2023, most of the processes in the court system against Teles Pires HP related with downstream
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Figure 1: Upwind Exposure to the Forest

This figure illustrates (A) the decline in forest cover in the Amazon region in the last 4 decades (Mapbiomas,
2022). (B) and (C) show the average precipitation in the state of Mato Grosso for the wet and dry seasons,
measured as a proportion of the historical average. Notice the declining trend, which is more pronounced in
the dry season (Copernicus, 2017).
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To model this effect, I follow Spracklen et al. (2012) in creating a data set that connects

upwind exposure to trees to downwind rainfall. The first step is to build trajectories through

which these air parcels travel, a model of atmospheric transportation. The trajectories are

built with data on wind speed and direction. Suppose I have an air parcel over a location ℓ

(latitude and longitude) for which I am interested in modelling rainfall, then I can use the

data on wind speed and direction to move one step back, that is to find where this air parcel

was one hour ago. If I keep doing this, eventually I will have traced the air parcel back to

the ocean.3 Figure 2a shows an example of a back trajectory.

The second step is to create a measure of exposure of that back trajectory to the forest.

This step requires forest data for all the area covered by the back trajectory, such as a binary

data indicating whether a location is forested or deforested. I then count the number of forest

pixels crossed by a back trajectory. For example, the back trajectory in Figure 2A will have

a measure of 12 pixels of forest. I can then repeat steps one and two for different periods for

all locations of interest. For example, in a different year, I could have the second trajectory

depicted in Figure 2B, with a measure of 11 pixels of forest. From Figure 2, it is likely

that the back trajectory in scenario A will deliver more rainfall than the back trajectory in

scenario B, since the exposure to forested pixels is higher in scenario A.

As an application, in this paper I model the effect of Amazon deforestation on the rainfall

of the Brazilian state of Mato Grosso, shown in Figure 4A. I collect three-dimensional data

on monthly wind speed and direction from 1985 to 2020 for the entirety of South America at

the resolution of 0.25◦ Copernicus (2017). For each month I have a three-dimensional matrix

with information on wind speed and direction for each point on South America (latitude and

longitude) and pressure levels varying from altitudes close to the forest canopy up to around

8000 meters. I also collect yearly data on land use for the entire Amazon from 1985 to 2020

from Mapbiomas (2022), at a resolution of 30 meters. I then upscale Mapbiomas’ data to

match the resolution of ERA5’s data with an average filter. Figure 3A shows a sample of

back trajectories for the state of Mato Grosso. See in the Appendix Table 4 for descriptive

statistics and Table 3 for additional information on the data source.

To estimate the relation between forest and rainfall, denote by rℓ,m,y the rainfall in loca-

tion ℓ, month m, and year y; fℓ,m,y the exposure to forested pixels along the back trajectory

communities are about fish deaths and lack of potable water.
3I compute the back trajectories up to 5 days and set pressure level to 800 hPa following Spracklen et al.

(2012). Each step and output has length of 1 hour. Spracklen et al. (2012) uses a smaller panel data (2001-
2007) with a lower spatial resolution (100°) but with a higher temporal resolution (hourly). As I employ
a fixed-effect estimator, I need a long panel to generate enough variation of deviations along long-term
transportation patterns. Also, as I want to study the effect of deforestation on Teles Pires, I opted for a
higher spatial resolution.
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started in ℓ, or the upwind exposure to the forest; xℓ,m,y the length of the back trajectory on

land, to control for the fact that longer trajectories mechanically present a higher count of

upwind exposure to the forest. The effect of deforestation on rainfall is given in Expression

1

rℓ,m,y = α + βmfℓ,m,y + γxℓ,m,y + ϵℓ,m,y (1)

As the back trajectories are long, the fℓ,m,y measure is dominated by forest pixels that are

far away from location ℓ. Therefore, it is unlikely that local shocks to ℓ can affect the count

fℓ,m,y. For example, the construction of a road in location ℓ could concomitantly affect local

deforestation and rainfall (perhaps through changes in local temperature). In this case there

could be variables in the error term of Expression 1 that correlates with the exposure to the

forest variable (fℓ,m,y). Nonetheless, the atmospheric trajectories that are relevant for the

mechanism are hundreds or even thousands of kilometers long, in a way that local changes

in deforestation – for example, in a 25 kilometers range – will have a small numerical impact

in the total exposure to the forest.

It is important not to include mediators or bad controls (Wooldridge, 2005), such as

temperature, since the upwind exposure to the forest can affect temperature at ℓ. The

identification of the model relies on the variation of the back trajectories and therefore

on the variation of the wind data. Furthermore, the mechanisms behind the link between

transpiration and humidity transport (Salati et al., 1979; Spracklen et al., 2012) provide

further evidence of the causal interpretation of Expression 1. Notice that for each location-

month I build one back trajectory generated by the prevailing winds of that month. To build

the exposure to forest pixels for each location-month I overlap the coordinates of the back

trajectory with the land use data (see Figure 2).

There are many options of atmospheric transport models relying on data of wind speed

and direction that are then integrated to build atmospheric trajectories. The differences

among the models are the spatial resolution, the temporal resolution and the integration

method. Alternative models from the economics literature on pollution make use of atmo-

spheric models with greater temporal resolution (Hernandez-Cortes and Meng, 2023; Miller

et al., 2017). This is necessary since a pollution source, such as fires, is usually short-lived.

But the transportation of humidity from the ocean is a continuous process, which allows me

to leverage monthly trajectories patterns and thus explore longer panels.

Figure 3B shows the results of this estimation for different sets of fixed effects with stable

results across specifications (Table 1). As expected, the estimated βm coefficients are all

positive, meaning that upwind exposure to the forest increases downwind rainfall. As Figure
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3B shows, the effect of forest exposure on rainfall is lower in the dry season. Notice that

Expression 1 is an equation in levels, connecting rainfall levels to the exposure to the forest

variable. Statistically, as rainfall is higher in the wet season (see Table 4 in the Appendix) , it

is expected that the overall effect of vegetation on rainfall would be higher in the wet season.

From a mechanism perspective, the transpiration of trees varies along the year, being higher

in levels in the wet-season, even though the ratio of precipitation of transpiration origin

divided by the total precipitation is lower (Costa et al., 2012).

To understand the magnitude of the estimated effects, I explore a counterfactual where

there would not have been deforestation in the Amazon since 1985, the first year I have data

on land use. As atmospheric trajectories vary year to year, to generate a counterfactual

change in rainfall I compute counterfactual changes for all years in the data. For visualiza-

tion purposes I also compute the average across years. I assume that all the atmospheric

trajectories of the last decades offer a good approximation of the distribution of possible

atmospheric trajectories and that an average of these trajectories is the best predictor of fu-

ture behavior. In Section 4, I discuss how year-to-year variation in atmospheric trajectories

affect the counterfactual exercises of potential energy generation.

Figures 3C and 3D show the impact that the accumulated deforestation of the Amazon

since 1985 has on the total rainfall of the dry season - April to August - and the wet season -

September to March - measured as a proportion of the historical average. The accumulated

Amazon deforestation generates a decrease of rainfall of 13% and 8% of the historical average

in the state of Mato Grosso in the dry and wet seasons, respectively. Some regions face an

effect of more than 25% in the dry season and other regions face an effect of more than 14%

in the wet season.

There are other potential mechanisms connecting deforestation and rainfall. In this

paper, I focus only on one mechanism, of deforestation affecting rainfall via changes in

transpiration and its transport via atmospheric circulation. In the model, I only capture

effects that can be explained by the combined variation of wind changes and deforestation.

Given the length and direction of back trajectories shown in Figure 3A, most of the variation

of the upwind exposure to the forest comes from deforestation outside of the Teles Pires river

basin and downriver from the plant, therefore it does not account for other mechanisms that

may result in decrease of river flow in the basin, such as potential large upriver irrigation

projects. Additionally, as noted in Leite-Filho et al. (2021) and Smith et al. (2023), even

at a local level deforestation has additional negative impacts on rainfall. Thus my results

should be interpreted as a lower bound on the effects of deforestation on rainfall, river flow,

and energy generation.
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Figure 2: Upwind Exposure to the Forest

This figure illustrates the construction of the upwind exposure to forested pixels. Consider a location ℓ,
in which we are interested in modelling the rainfall. In A and B, the dashed black line represents a back
trajectory of atmospheric transport from ℓ to the Ocean. Each trajectory visited different pixels along the
way. Specifically, in A the back trajectory visited 12 pixels of forest and in B the back trajectory visited 11
pixels of forest. These numbers are what I denoted by fℓ,m,y in Expression 1
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3 Teles Pires: Rainfall and Energy Capacity

The Teles Pires HP started operating in 2015. As a run-of-river plant, it is characterized

by a limited capacity of water storage that thus relies heavily on the river flow. This type

of HP can change environmental costs associated with HPs (Assunção et al., 2017; Bertas-

soli Jr et al., 2021), since its does not require the flooding of large portions of land for the

construction of a reservoir. Teles Pires has an installed capacity of 1,820 MW, sufficient to

supply a population of 5 million people. Figure 4A shows the location of the HP and of the

Teles Pires’ basin. I use panel data to estimate the climate model (Expression 1), leveraging

spatial and temporal variation in the data. But to study counterfactuals in Teles Pires, once

I have estimated the parameters, I apply them to the data at the location of the Teles Pires

HP, which given the resolution of my data, is a time series. The effect of deforestation on

rainfall calculated in Section 2 for the location of Teles Pires generates an average decrease

of rainfall of 6% and 10% of the historical average in the dry and wet seasons, respectively.

There are two steps to measure the impact that changes in rainfall have on energy gen-

eration: first, map how rainfall affects the river flow; second, map how the river flow affects

potential energy generation.

I use river flow data from the National System Operator (ONS, 2022) from 2015 to 2020

and the same monthly data on rainfall that was used for the climate model, but selecting

data only at the location of the plant. The model is a linear regression of the log of river

flow on a month (dm) on the accumulated 4 months rainfall (rm), as described in Expression

2. Figure 4B shows that both variables are strongly correlated and Table 2 in the Appendix

shows a R2 of 94% for the linear regression model. In a cross-validation exercise with a

year-by-year rolling window the average R2 is of 93%. Different from the causal climate

model, Expression 2 is a predictive model where I am not interested in identifying causal

mechanisms of how rainfall affects river flow, but rather to build a forecast of how changes

in rainfall explain changes in river flow. A predictive model has the advantage of requiring

less domain knowledge for its implementation and it is easier to validate given the goal of

minimizing prediction errors using cross-validation (e.g., Athey (2017)). It is important to

acknowledge the limitations of this approach, in particular if changes in rainfall were enough

to change the joint distribution of rainfall and river flow the predictive performance could

drop in counterfactual scenarios. However, I believe the predictive model is the most suitable

in this case given that my counterfactual rainfall decrease in Teles Pires is around 10%.

log dm = α + β

(
m∑

t=m−3

rt

)
+ ϵm (2)
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To map how river flow (dm) affects monthly potential energy generation (pm), I follow

a formula based on physics given in Expression 3 (Stickler et al., 2013). This expression is

not estimated since the elasticity of river flow on potential energy generation is known to be

one.

log pm = log dm + ψm (3)

Expression 3 is a specification from physics. The Gravitational Potential Energy (GPE)

is given by GPE = mgh, where m denotes mass, g the acceleration of gravity, and h is

the height (see e.g., Halliday et al. (2013)). In the hydropower case, water (mass m) is

stored at a higher elevation than the turbines (the h variable). Additional heterogeneity,

such as waste from different turbines, are captured by additional (empirical) constraint

parameters, say k, extending the equation to GPE = kmgh. Nonetheless, taking logs we

have logGPE = ψ + logm, where ψ is a combination of characteristics constant for a HP

(g, k, h).

While I am modeling changes in potential energy generation, as Teles Pires is a run-

of-river plant, the connection between potential and actual energy generation is very close.

A regression of the log of energy generation on a constant and the log of river flow yields

a elasticity of 0.91 (standard deviation of 0.05). The estimated elasticity is close to one

and statistically we cannot reject the hypothesis that it is one, as expected by the elasticity

imposed in Expression 3 that connects river flow with potential energy generation.

Once the β parameter is recovered from Expression 2, I can compute the effect of rainfall

changes on potential energy generation in a closed form Expression 4

∆pm
pm

≈ β∆

(
m∑

t=m−3

rt

)
(4)

4 Teles Pires: Deforestation and Energy Capacity

To compute the impact that the Amazon deforestation has on the energy capacity of the

HP, I combine: Expression 4; the difference between observed and counterfactual rainfall

computed in Section 2; and the estimated parameter β of Table 2. I generate a difference

between observed and counterfactual rainfall using the atmospheric trajectory data for each

month of year since 1985 up to 2020. The idea is that all the atmospheric trajectories of

the last four decades offer a good approximation of the distribution of possible atmospheric

trajectories. Then, for each pair of month and year atmospheric data I compute ∆pm
pm

, the

11



Figure 3: Deforestation and Rainfall

(A) the black lines show a sample of the atmospheric back trajectories for February 2015. (B) shows the
result of estimating Expression 1 for different sets of fixed effects. This regression captures the effect that
upwind exposure to the forest has on downwind rainfall. The values of this graph are shown in Table 1 in the
Appendix. the vertical bars shows the 95% confidence interval with standard errors clustered at the pixel
level. (C) and (D) show the decrease in rainfall as the result of Amazon deforestation for the dry season and
wet season, respectively, measured as a proportion of the historical average.
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percentage change in energy capacity, as described by Expression 4.

Figure 4C shows the result of this exercise. As in Section 2 and Figures 3 C and D,

the counterfactual I am considering is one where there would be no deforestation. The gray

lines show the loss in potential capacity for each year of atmospheric trajectory data and

the black line shows the average across the years. The average effect across years indicates

a loss of capacity between 10% and 2.5% due to the cumulative Amazon deforestation. The

average effect, nonetheless, is far from the extreme scenarios in which the effect can be as

large as 17.5%. These large effects would occur in the years that atmospheric trajectories

are such that they are highly exposed to deforested regions.

5 The Value of the Forest for Teles Pires

To compute the value of the forest for Teles Pires, I use a partial equilibrium analysis. I

multiply the average loss of energy capacity by a monthly average of the price of energy from

2015 to 2020 (CCEE, 2022)4. To compute the average loss of energy capacity I multiply the

estimated effects of Figure 4C (the gray lines) by the monthly potential energy generation

and take the average.5 The result indicates an expected loss of USD 21 million per year,

which can be interpreted as the HP’s willingness to pay for conservation/restoration policies.

This calculated loss, which is essentially price times quantity, is suitable for my application

because the marginal cost of the HP operation is negligible (Edenhofer et al., 2011) and Teles

Pires is a price taker, since it accounts for a little more than 1% of the installed capacity in

Brazil. Nonetheless, a counterfactual scenario without deforestation could impact other HPs

and other sectors, changing the overall demand and supply of energy in Brazil. That would

require a general equilibrium model which is not the goal of this paper (see e.g., (Jahns et al.,

2020; Ferreira et al., 2015)).

If thermal power from coal or natural gas were used to compensate for the average annual

loss, it could result in an emission of 347,000 tCO2 per year (IEMA, 2022). This represents

a conservative estimation of indirect emissions, as negative rainfall shocks are likely to affect

multiple hydropower plants simultaneously. Considering a social cost of carbon at USD

4For this exercise I use the Price for Settlement of Differences (PLD). Possible alternatives are: Marginal
Cost of Expansion computed by the Energy Research Office (EPE), for which the average deviates from the
average PLD by less than 1%; Marginal Cost of Operation computed by the ONS which averages 20% higher
than the PLD.

5When the flow of the river is already at the plant’s full capacity, the benefit of more rainfall is zero.
For Teles Pires, I take full capacity to be achieved with a river flow of 4,778 m3/s, the maximum monthly
average river flow. I then cap the value of rainfall to the maximum that Expression 2 predicts a flow of
4,778. The monthly potential generation is computed as the maximum energy capacity times the proportion
of average monthly river flow to maximum capacity.
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50 per tCO2 (EPA, 2016), the reduced rainfall and the consequent shift from hydroelectric

power would lead to an annual indirect cost of USD 17.35 million. This value is almost as

large as the direct impact of reduced rainfall on Teles Pires’ revenue of USD 21 million. This

aligns with the results of Qiu et al. (2023), that found that in the western region of the

United States the costs associated with emissions resulting from drought-induced shifts from

hydro to fossil fuel generation can increase costs up to 2.5 times. Additionally, greenhouse gas

emissions from hydropower plants are primarily caused by the decomposition of vegetation in

reservoirs (Fearnside, 2005; Demarty and Bastien, 2011). Consequently, a decrease in energy

capacity for a given HP can also elevate the ratio of potential greenhouse gas emissions per

unit of energy.

Given an expected loss of USD 21 million per year and a total accumulated deforestation

of 690,000 km2 between 1985 and 2020, one could compute that the present value of the

forest for Teles Pires would be of USD 612 per km2.6 However, this computation does not

consider that only some areas of the forest affect Teles Pires via the atmospheric transport

mechanism.

To distribute the willingness to pay for conservation only among those pixels that affect

Teles Pires, I map which pixels in the Amazon has been visited (or flown over) by a trajectory

arriving at Teles Pires. These are the painted pixels in Figure 4D. The Amazon area that

influences rainfall in Teles Pires has 177,500 km2 of deforestation and thus the present value

of restoration of these areas for Teles Pires would be of USD 2,382 per km2.

To further refine this distribution, first, I map how many times each pixels has been

visited, which measures how much exposure Teles Pires has to each upwind pixel; second,

I divide the willingness to pay in proportion to how many times each deforested pixel is

visited. The result is shown in Figure 4D. In this last step, the mean forest value is of USD

2,037 per km2. With 10% of them getting more than USD 4,100 and 5% of them more than

USD 6,000. The average land price in the Northeast of the Brazilian Amazon is USD 100,500

per km2 (Markit, 2021). Assuming that the land price represents all future stream of net

benefits from the land, the externality cost of only one HP could buy off 2% of the private

net benefits of deforestation.

6 Downstream but Upwind: Indigenous Territories

The approach described so far also allows for an ex-ante assessment of the cost of deforesting

areas in the Amazon. As an application, I build a counterfactual where I deforest the entire

6Using a discount rate of 0.05: (USD 21,147 million/ km2 690,621)/0.05
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Figure 4: Deforestation and Energy Generation

(A) shows the location of the Mato Grosso state, the Teles Pires hydropower plant, the Teles Pires river
basin, and the Amazon Rainforest. (B) shows the correlation between the four months cumulative rainfall
and the log of the river flow. (C) shows the effect of Amazon deforestation on the energy capacity of Teles
Pires. Each gray line corresponds to the counterfactual energy capacity using atmospheric trajectories of a
different year from 1985 to 2020. The black line shows the average effect of the gray lines. A zero effect
occurs when the observed river flow already gives the plant full operational capacity. (D) shows the value of
the forest as described in Section 5, measured in USD as the present value of 1 km2 of forest. The values
were capped at the 95% percentile for better visualization.
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Figure 5: Deforestation in Mundurucu and Energy Generation

(A) shows the location of the Mundurucu Indigenous territory overlapped with Figure 4 (A) and (D). (B)
shows the effect of Mundurucu deforestation on the energy capacity of Teles Pires. Each gray line corresponds
to the counterfactual energy capacity using atmospheric trajectories data of a different year from 1985 to
2020. The black line shows the average effect of the gray lines. A zero effect occurs when the observed river
flow already gives the plant full operational capacity.

Indigenous Territory of Mundurucu (Figure 5A). This territory of 24,000 km2 is predomi-

nantly covered in native vegetation. It is located both downstream and on the surrounding

areas of Teles Pires. Thus, it can be affected by necessary relocation and changes in the

downstream river flow. Concomitantly, given the patterns of atmospheric circulation in the

region, the Mundurucu territory provides rainfall to the downwind Teles Pires HP, a positive

externality of the forest cover.

To quantify the magnitude of this positive externality from the Mundurucu territory I

run a counterfactual exercise where the entire terrritory is deforested. I then go through

all the steps of the previous counterfactual, mapping the deforestation effect on rainfall,

how it changes river flow and energy generation, and finally valuing this change in energy

generation.

Figure 5B shows the loss of energy generation, in a similar way as in Figure 4C . As in

this exercise the area considered is smaller than the previous one, the effects across months

are also smaller, with the loss on the wet season being mostly around 0%-2%. The average

annual loss amounts to USD 2.4 million, which can be seen as the willingness to pay of the

HP to preserve the forest cover of the Indigenous Territory.
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This type of setting shows a case where multiple ecosystem services can compose. Down-

stream peoples being affected by changes in an ecosystem service - river flow - while affecting

other ecosystem service - rainfall supply.

7 Conclusion

I develop a data-driven approach to estimate the value of the ecosystem service provided by

tropical forests in maintaining rainfall regimes for hydropower plants. I present an econo-

metric climate model that connects a deforestation scenario with changes in rainfall. I then

connect this climate model with a predictive model of how rainfall affects river flow and a

model from physics of how river flow affects potential energy generation. These three steps

generate the estimated lost potential energy generation due to deforestation for a HP. Fi-

nally, I show how it is possible to use the climate model to determine which specific locations

in the forest the HP is most exposed to and therefore which locations have a higher value

for the HP for conservation and/or restoration.

The contribution share of the Amazon rainforest for its own rainfall varies between 10%

and 45% depending on the region, with an average share of 35%. Outside the Amazon basin,

the contribution of the Amazon rainforest to some regions of South America can also be high,

particularly on the River Plate basin it averages 17% (Zemp et al., 2017; Costa et al., 2012).

Together, both basins account for 70% of the installed hydropower capacity in Brazil.

As an application, I study the effect of the Amazon deforestation on the energy capacity

of Teles Pires. I first show that, in the state of Mato Grosso, where Teles Pires is located,

Amazon deforestation has had an average effect of decreasing rainfall by 13% in the dry

season and 8% in the wet season. This effect amounts to an average decrease in potential

energy generation of 10% in some months with extreme scenarios reaching as much as 17%.

The average year loss amounts to USD 21 million per year, which can be seen as a willingness

to pay for conservation/restoration policies. Distributing this value proportionally among

the locations in the Amazon that Teles Pires is most exposed to results in an average present

value for the forest of USD 2,037 per km2, enough to buy off 2% of the private benefits of

the deforested land.

It is also possible to build an ex-ante assessment of the impact of deforestation on energy

generation. I explore the counterfactual where I completely deforest the Indigenous Terri-

tory of Mundurucu, a territory located both downstream and upwind of Teles Pires. The

deforestation of Mundurucu alone would cost USD 2.4 million per year for Teles Pires.
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Table 1: Climate Model

Month (0) (1) (2) (3)

Jan 0.950*** 0.934*** 1.131*** 1.312***
(0.018) (0.019) (0.013) (0.018)

Feb 1.122*** 1.133*** 1.351*** 1.392***
(0.021) (0.022) (0.013) (0.020)

Mar 0.850*** 0.825*** 0.975*** 0.968***
(0.021) (0.023) (0.012) (0.015)

Apr 1.429*** 1.377*** 1.421*** 1.339***
(0.042) (0.044) (0.023) (0.018)

May 1.302*** 1.335*** 2.000*** 1.181***
(0.037) (0.038) (0.024) (0.023)

Jun 0.681*** 0.612*** 1.126*** 0.247***
(0.017) (0.018) (0.031) (0.014)

Jul 0.385*** 0.376*** 0.897*** 0.028***
(0.013) (0.015) (0.030) (0.009)

Aug 0.933*** 0.901*** 1.239*** 0.995***
(0.022) (0.023) (0.043) (0.022)

Sep 1.223*** 1.193*** 1.360*** 1.201***
(0.025) (0.027) (0.020) (0.018)

Oct 0.574*** 0.542*** 0.855*** 0.750***
(0.018) (0.019) (0.011) (0.016)

Nov 0.633*** 0.606*** 0.949*** 1.350***
(0.022) (0.023) (0.013) (0.013)

Dec 0.859*** 0.833*** 1.181*** 1.442***
(0.023) (0.025) (0.015) (0.014)

N.obs 516,240 516,240 516,240 516,240

Month FE Yes Yes Yes No
Year FE No Yes Yes Yes
Pixel FE No No Yes No
Pixel-Month FE No No No Yes
Distance Yes Yes Yes Yes

R2 0.82 0.83 0.86 0.88
R2 (within) 0.21 0.21 0.26 0.17
R2 (between) -0.42 0.32 -0.30 0.47

This table shows the estimates of Expression 1, a regression of monthly rainfall on the upwind exposure to the
forest. Each column presents a different specification with a different set of fixed effects. Every specification
includes total distance of the back trajectory on land as a control. Number of observations: 516,240. ***
means p-value < 0.01.
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Table 2: Precipitation and River Flow

Parameter (1) (2)

β 0.052*** 0.049***
(0.002) (0.007)

α 6.109*** 6.196***
(0.042) (0.154)

Month FE No Yes
# obs 72 72
R2 0.94 0.95

This table shows the estimates for Expression 2, the regression of the log of the monthly river flow on the 4
months cumulative rainfall. The effect of rainfall on river flow is captured by the parameter β. In column
(2), I add a month fixed effect. Number of observations: 72. *** means p-value < 0.01.

Table 3: Data Description

Data Description Source

Wind speed
and direction

Three dimensional (latitude, longitude, pressure)
monthly data on wind speed and direction from 1985
to 2020 for South America at the resolution of 0.25°

Copernicus
(2017)

Rainfall Monthly data on precipitation from 1985 to 2020 for
South America at the resolution of 0.25°. ERA5 reanal-
ysis combines model data with global observations

Copernicus
(2017)

Land use Yearly data on land use for the entire Amazon Rainfor-
est. Original resolution is of approximately 30 meters.
It is then filtered (taking the average) to match the wind
data resolution

Mapbiomas
(2022)

River flow Monthly data on river flow from 2015 to 2020 for the
Teles Pires HP

ONS (2022)

Energy price Monthly average of the price of energy – Price for Set-
tlement of Differences (PLD) – from 2015 to 2020

CCEE (2022)

This table describes the data used in the paper and their sources.
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Table 4: Descriptive Statistics

Month Rainfall (mm) River flow (m3/s) Energy price (USD/MW.h) Forest exposure

Jan 9.37 2669.33 36.21 2.00
(2.53) (436.33) (21.87) (1.02)

Feb 9.43 3796.50 38.97 1.80
(2.67) (977.54) (27.79) (1.07)

Mar 7.97 4778.50 33.96 1.72
(2.25) (807.73) (19.39) (1.11)

Apr 4.74 4282.17 32.68 0.89
(2.04) (804.28) (25.36) (0.77)

May 1.63 2505.00 40.86 0.72
(1.19) (695.16) (26.32) (0.48)

Jun 0.34 1360.00 35.81 0.75
(0.51) (290.74) (30.04) (0.57)

Jul 0.20 850.83 41.40 0.82
(0.36) (179.42) (28.76) (0.64)

Aug 0.46 604.33 48.14 0.73
(0.73) (105.37) (35.33) (0.52)

Sep 1.96 503.83 50.76 0.99
(1.52) (97.47) (31.62) (0.76)

Oct 4.80 661.33 54.04 1.46
(1.69) (155.11) (22.29) (0.95)

Nov 7.13 989.00 53.70 2.010
(2.05) (290.78) (30.67) (0.96)

Dec 8.85 1893.00 32.48 2.10
(2.42) (846.45) (16.13) (0.89)

This table shows descriptive statistics (mean and standard deviation) of the data used in the paper by month.
As the forest exposure is normalized by its standard deviation, it has no unit of measurement.

28


	Introduction
	Climate Model: Deforestation and Rainfall
	Teles Pires: Rainfall and Energy Capacity
	Teles Pires: Deforestation and Energy Capacity
	The Value of the Forest for Teles Pires
	Downstream but Upwind: Indigenous Territories
	Conclusion
	Appendix

