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Abstract

I develop a discrete choice model of deforestation with spatially heterogeneous en-

dogenous climate. Using pixel-level data for the Amazon Rainforest and the Brazilian

state of Mato Grosso, one of the most important agricultural hubs in the world, I

estimate the model and consider a counterfactual where farmers are allowed to de-

forest protected areas. Deforestation reduces rainfall and increases temperatures for

downwind farmers, creating cascading effects on a network of externalities. Ignoring cli-

mate feedback loops significantly underestimates the costs of deforestation, highlighting

the importance of considering climate endogeneity beyond the production-emissions-

temperature framework.
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1 Introduction

Climate is endogenous to people’s actions. The integration of climate and human action

models lead to a large literature on the endogeneity of productivity to temperature through

emissions resulting from economic production (Nordhaus, 1991, 2019). However, outside

this literature connecting production, emissions, and temperature - predominantly through

macro-environmental models - the endogeneity of climate has been ignored. This includes the

literature on deforestation (Souza-Rodrigues, 2019; Balboni et al., 2023) despite longstanding

evidence from the natural sciences showing deforestation’s significant impacts on climate

(Salati et al., 1979; Nobre et al., 1991; Sampaio et al., 2007; Flores et al., 2024). In this

paper, I build a micro-environmental model where land use and climate interact. Specifically,

climate affects agricultural productivity, which affects deforestation, which in turn affects

climate.

Salati et al. (1979) is the seminal work demonstrating that tropical forests can affect

climate. Salati et al. (1979) showed that most of the Amazon’s rainfall is produced by

the forest itself. This occurs because tropical forests play a crucial role in the water cycle.

Solar energy evaporates ocean water, which the atmosphere transports, creating rain over

continental land. In the presence of tropical forests, rainwater is continuously used by trees

in photosynthesis, with transpiration from the trees recycling the rainwater and recharging

atmospheric humidity as it moves inland. These are the flying rivers of tropical forests

(Marengo et al., 2004). Nobre et al. (1991) later showed that the Amazon influences not

only its own rainfall but also South America’s rainfall. The implication of this mechanism

is that deforestation reduces rainfall.

As deforestation impacts rainfall and other climate outcomes, it subsequently affects key

inputs for the agricultural sector, which is the main driver of tropical deforestation (Souza-

Rodrigues, 2019; Araujo et al., 2020; Domı́nguez-Iino, 2021; Hsiao, 2021; Pendrill et al.,

2022; Farrokhi et al., 2023). Since the flying rivers mechanism operates through atmospheric

transport, the deforestation decisions of farmers upwind influence climate conditions for

farmers downwind. This creates a network of externalities closely linked to the configuration

of forest cover and atmospheric circulation. As a result, this network connects farmers

separated by hundreds of kilometers in an economy where each farmer’s productivity is

endogenously affected by the deforestation decisions of others.

To model this externality network, I connect a discrete choice model of land use with

a climate model of atmospheric circulation. In the discrete choice model, each farmer de-

cides whether to deforest its plot and what to produce on it. Each potential agricultural

production has a return that depends on climate, which is a function of the upwind forest
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cover configuration, referred to here as upwind forest. This upwind forest is derived from

the climate model, which tracks the paths of atmospheric trajectories from the ocean to a

farm, storing information on land use along the way. A weighted sum of upwind forest pixels

represents my measure of upwind forest.

To integrate the discrete choice model with the atmospheric circulation model, I use the

fact that the discrete choice model implies a probability of the farmer choosing to maintain

forest cover. Assigning this probability as the forest cover of a farmer means that each

farmer’s probability is a function of the probabilities of other farmers. Formally, this creates

a map of forest probabilities into forest probabilities. Thus, an equilibrium in this economy,

which is a Nash equilibrium, is a fixed point: a vector of land use decisions consistent with the

climate it generates. I first demonstrate that an equilibrium always exists in this economy.

I then derive conditions for this probability map to be a contraction, which implies a unique

equilibrium. This condition essentially places a bound on the externality effect that one

farmer can have on others.

As an application of my model, I study the importance of protecting Indigenous Territo-

ries in the Amazon on the agricultural sector of the Brazilian state of Mato Grosso, one of the

most important agricultural hubs in the world. Even though the model has this complicated

network structure it can be estimated with standard micro-applied techniques.

I start by testing the mechanisms of the climate model, establishing that upwind forest

affects both rainfall and temperature. Using three-dimensional data on wind velocity and

direction (Copernicus, 2017), I construct atmospheric circulation patterns from 1985 to 2017

across South America. I then combine these trajectories with land use data from Mapbiomas,

along with rainfall and temperature data from Copernicus (2017), to build a panel dataset

on upwind forest across the Amazon rainforest and climate outcomes in Mato Grosso. Since

this paper centers on climate endogeneity, this endogeneity introduces challenges for iden-

tification, including potential reverse causality. To address this, I develop an instrumental

variable that leverages variation exclusively from changes in atmospheric circulation to iden-

tify the parameters of the climate model. I find a strong and significant effect of upwind

forest on rainfall and temperature: a one standard deviation increase in upwind forest raises

average rainfall by 10% and lowers average temperature by 0.12 ◦C.

I then estimate the parameters of the discrete choice model of land use. This model

produces regressions that can be estimated with land use data and the panel dataset on

upwind forest. I use detailed land use data from Simoes et al. (2020), which classifies land

use at a 250-meter resolution in the Brazilian state of Mato Grosso. Importantly, this

dataset incorporates information throughout the year to construct the land use classification

algorithm, enabling it to distinguish between forest, pasture, crops, and double cropping,
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the latter representing two harvests within a single year. I focus on the years 2008 and 2017,

a period of regulatory stability (Burgess et al., 2019), and on data on private land. As with

the climate model, climate endogeneity presents identification challenges. To address this, I

again use variation in upwind forest caused by atmospheric circulation changes to instrument

for the actual upwind forest. I find a significant effect of upwind forest on the returns of

crops and double-cropping. However, due to the model’s structure, understanding the true

interpretation of the land use model parameters requires simulating a counterfactual and

finding a new equilibrium using the contraction result.

In my counterfactual exercise, I simulate a policy rollback of the protection status of the

Indigenous Territories in the Xingu Basin.1 The Xingu, located within the Amazon Basin in

Brazil, is one of the earliest initiatives in indigenous land protection, covering 141,000 square

kilometers—twice the size of Portugal—and situated between rapidly advancing agricultural

frontiers in Brazil. This type of policy where protection is rolled back, known as Protected

Area Downgrading, Downsizing, and Degazettement (PADDD), has gained traction globally

(Pack et al., 2016; Golden Kroner et al., 2019).

I apply the parameters of the land use model, estimated using data on private land, to

the Xingu region, effectively rolling back its protection status. Deforestation in the Xingu

would lead to cascading effects on climate and land use decisions, both within and outside

the region. In the new equilibrium, 47% of the Xingu is deforested. As a consequence, some

regions in Mato Grosso experience a loss of over one-fifth of their average rainfall and an

increase in temperature of 0.3 ◦C. The increase in forest choice probability outside the Xingu,

which I interpret as farmers abandoning land, totals 60,000 square kilometers. By summing

the benefits of deforesting the Xingu— increased land availability for agriculture—with the

costs— deterioration of climate conditions for agricultural production—I show that account-

ing for climate feedback offsets 40% of the benefit of expanding agricultural land. That is,

ignoring the climate’s endogeneity leads to a severe underestimation of the costs of defor-

estation. However, these aggregate effects mask significant spatial heterogeneity, with the

winners and losers of such a policy being determined by atmospheric circulation.

This paper connects with various strands of literature both within and outside economics.

Most broadly, it aligns with the literature on the endogeneity of climate. Most works in this

area employ macro-environmental models, particularly Integrated Assessment Models, as pi-

oneered by Nordhaus (1991, 2019), to quantify policy trade-offs in emissions reduction. More

recently, this literature has begun to incorporate spatial dimensions using Dynamic Spatial

Integrated Assessment Models (Desmet and Rossi-Hansberg, 2024; Cruz and Rossi-Hansberg,

1Pronounced as [shing-goo]
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2024). My contribution to this literature is to broaden the scope of factors considered as

endogenously affecting climate, moving beyond the production-emissions-temperature nexus.

The literature on the economics of deforestation has largely overlooked the endogeneity

of climate. Studies such as Souza-Rodrigues (2019), Araujo et al. (2020), Domı́nguez-Iino

(2021), and Hsiao (2021) model drivers of deforestation but completely ignore the feedback

effects of deforestation on climate, leading to an underestimation of deforestation costs.2

Similarly, papers evaluating the effectiveness of policies to curb deforestation underestimate

the benefits of these policies for the same reason (Assunção et al., 2013, 2019; Burgess

et al., 2019). A notable exception is Grosset et al. (2023), which uses micro-applied tools to

show that a large tree-planting program in the US significantly impacted local climate and

farmers’ decisions. My paper contributes to this literature by developing a model to assess

counterfactual deforestation scenarios in a framework where climate is endogenous.

There is a broader literature on the impacts of climate on agriculture which is an impor-

tant source that informs many of the parameters in macro-environmental models. Focused

on short-term weather variations, this literature aims at a deeper discussion on identification

challenges in the relationship between agricultural productivity and rainfall or temperature

(Schlenker and Roberts, 2009; Dell et al., 2014; Yang et al., 2024). My contribution to this

literature is to introduce a modeling approach that addresses the inevitable reverse causality

of land use and climate/weather inherent in such empirical analyses.

Finally, this paper builds on a large literature in natural sciences on the impacts of defor-

estation on climate. This literature is highly diverse. For example, there are papers testing

physical implications of such systems, with Salati et al. (1979) being the seminal work on the

field, followed by more recent papers such as Gatti et al. (2021). Much of the literature focus

on simulated computable models (Nobre et al., 1991; Wunderling et al., 2022; Flores et al.,

2024), but there is also correlational studies with Spracklen et al. (2012) being a pioneering

work using observational data to establish the link of deforestation and rainfall. Leite-Filho

et al. (2021) do consider local impacts of deforestation on climate and agriculture, but ab-

stract from a notion of equilibrium using a simulated model calibrated from correlations.

My contribution to this literature is twofold. First, I introduce econometric tools that allow

for a more thorough discussion of identification challenges and statistical inference. Second,

by modeling the equilibrium between climate and land use decisions, I enable a deeper un-

derstanding of the importance of adaptation and optimal behavior in response to a changing

climate.

2Methodologically, this paper also connects with other papers using discrete choice models of land use
(Scott, 2014; Sant’Anna, 2021), in particular Rafey (2020) uses a discrete choice model to study the impact
of water markets on the Australian agricultural sector.
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The remainder of this paper is organized as follows: Section 2 presents the model, con-

necting the climate and land use models in equilibrium. Section 3 discusses my counterfactual

scenario of allowing deforestation in protected areas, showing empirical results on the im-

pact of deforestation on climate and comparing equilibria across different land use policy

scenarios. Section 4 addresses important caveats of the model. Section 5 concludes.

2 Model

This section has three parts. First, I build a model where climate is a function of land

use. Second, I build a discrete choice model of land use that allows me to identify model

parameters when climate is endogenous. Third, I show how these two models — climate and

land use — can be combined into a single consistent framework.

Climate depends on land use

The seminal work by Salati et al. (1979) initiated a series of studies showing the role of

tropical forests in regulating climate systems. One key mechanism by which tropical forests

impact climate is through their role in the water cycle. Solar energy evaporates ocean

water, creating humid air parcels that move toward land. As these parcels travel, they lose

humidity through precipitation, while ground-level transpiration from trees replenishes air

moisture, sustaining downwind rainfall. Through this process, forests influence rainfall in

areas hundreds or even thousands of kilometers away — a phenomenon known as flying

rivers (Marengo et al., 2004; Nobre, 2014). Consequently, deforestation in tropical forests

reduces rainfall, impacting climate on a continental scale (Costa et al., 2012; Zemp et al.,

2017; Staal et al., 2018).

The model of how land use affects climate is based on Spracklen et al. (2012). To model

the causal effect of tropical forests on the climate of a location, three steps are needed: First,

I build a back trajectory of atmospheric transport for that location. This trajectory traces

the path of an air parcel from the ocean to the location of interest, identifying the terrain it

passed over after reaching land. Figure 1 illustrates two examples of back trajectories that

reach the target location (the white cell), shown as dashed black lines. Similar to tracing a

river upstream to find its source, following wind patterns reveals the path taken by an air

parcel from the ocean. By building such trajectories I can determine what type of terrain

an air parcel has flown over since its arrival in continental land. Second, I calculate a

weighted sum of forest pixels encountered along the back trajectory. For each step s along

this trajectory – at each new pixel that the trajectory reaches – I discount the contribution of
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Figure 1: Elements of the Climate Model. This Figure illustrates the steps needed to build the climate
model. The dashed black lines represent back trajectories of atmospheric transport, starting in the white cell
and walking back until the Ocean is reached. Along each trajectory, different types of terrain are covered.
In A, the back trajectory is exposed to 14 pixels of forest, while in B the trajectory is exposed to 10 pixels
of forest. That way, it is likely that scenario A will deliver more rainfall for the white cell than scenario B.

the additional pixel by θs given a parameter 0 < θ ≤ 1. This parameter θ accommodates the

idea that more distant locations may have a reduced impact. When θ = 1, for example, then

there is no weighting and I simply count the number of forest pixels along the trajectory. In

this case, the back trajectory shown in Figure 1A would yield a total exposure to the forest

of 14 forest pixels, while that in Figure 1B would yield 10 forest pixels. Thus, it is likely

that the scenario 1A will deliver more rainfall for the target location than the scenario 1B;

Third, I connect rainfall and other climate outcomes at the target location to the weighted

sum of forest pixels, termed upwind forest, using a linear model.

Formally, these three steps are described as follows.

First, given a location o in a time period q, I aim to determine the most likely trajectory of

the air parcel over location o during the previous ∆ periods of time. Let Wjq = {xjq, yjq, zjq}
denote latitude, longitude and pressure level (altitude) of an air parcel j in time q and let

Vjq denote the gradient of Wjt, which is the air velocity vector. Then this air parcel can be

traced one step back as:

Wj,q−1 = Wj,q − Vj,q
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Variations in wind speed and direction across different spatial points determine how a

particle will move within this wind surface. I then compound Expression 2 to build a back

trajectory for an arbitrary time window. Given a time window of ∆, the compounded back

trajectory is given by:

Wj,q−∆ = Wj,q −
∆∑
s=1

Vj,q−s (1)

Given a initial state Wj,0 and a time window ∆, I can compute a back trajectory. A

location o already defines a latitude and a longitude (xjt, yjt). By setting a pressure level

(zjt) and a time window (∆), I can compute the back trajectory of an air parcel that reaches

location o. For now, take the initial pressure level and the time window as given.

Second, once the back trajectory is built, I need to connect it with the underlying land

cover. Let Bo denote the back trajectory from a location o, which is the set of all locations

that the air parcel, which precipitates over o, has passed through during the previous ∆ time

periods. Let ho denote the measure of forest cover at location o and let s(o, j) denote the

number of steps separating location o from location j. Then the upwind forest of a back

trajectory is defined as:

Ho =
∑
j∈Bo

θs(o,j)hj (2)

Referring again to Figure 1, along each back trajectory, the upwind forest (Ho) is the

weighted sum of forest pixels.

Third, in the last step I model climate outcomes, primarily rainfall, over location o as a

function of the upwind forest. The model for rainfall is parametrized by:

Ro = γRHo + ϵo (3)

Where Ro denotes rainfall at location o. The marginal effect of deforestation on rainfall

is given by γR, if the deforestation occurs along the back trajectory path; otherwise the effect

is zero. For now, I only assume an additive functional form for the impact of land use on

rainfall, as shown above, without making further assumptions about the relationship between

Ho and ϵo. The impact of deforestation on rainfall may have additional consequences for

the climate. Temperature, in particular, is affected by precipitation. Thus, analogous to

Expression 3, I also model temperature as a function of upwind forest:

To = γTHo + εo (4)
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Where To denotes temperature at location o. Estimating the empirical effects of deforesta-

tion on climate involves several challenges, but I defer a discussion on data and identification

until after presenting the complete theoretical model of land use and climate. This section

showed how land use affects climate. The next section builds a model of how climate affects

land use.

2.1 Land use depends on climate

A farmer owns a plot of land i at location o and chooses a land use from a discrete choice set.

The farmer can either keep the plot as forest or clear it for agricultural activities. Formally,

let F denote the choice of keeping the land as forest while c ∈ C denotes using the land for

agriculture, where c denotes a choice within the possibility set C of available agricultural

activities.

If the farmer chooses an agricultural activity c, the farmer receives as return:

π̃c
i = Climateoα̃c +Xoβc + ξ̃co + ε̃ci

Where, Climateo denotes a vector of climate outcomes such as rainfall and temperature

at the location level, and α̃c is a vector of parameters that determines how climate affects land

use returns; Xo denotes a set of variables, such as, transportation cost and soil characteristics;

βc is another vector of parameters; ξco is an aggregate shock at the location level; εci is an

idiosyncratic shock at the farm level. Given the climate model discussed in the previous

section, this expression introduces some identification problems since the climate model

uses the same variation - changes in upwind forest - for different climate outcomes. If, for

example, Climateo includes rainfall and temperature, Climateoαc will end up being a linear

combination of upwind forest. This will be true for any additional climate outcomes, such as

days without rain and growing degree days as in Schlenker and Roberts (2009). Therefore,

my approach is to anticipate this constraint and incorporate it by directly rewriting the

farmer’s return as:

π̃c
i = αcHo +Xoβc + ξco + εci (5)

As is in the previous section, Ho denotes upwind forest at location o. In Expression 5,

the climate model is incorporated directly into the land use model, such that the shocks ξcm

and εci also include climate shocks net of the upwind forest mechanism.

The return a farmer receives by keeping his plot of land as forest is described by a

constant:
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π̃F
i = kF + ξFo + εFi (6)

Where kF is the constant, ξFo is an aggregate shock at the location level, and εFi is an

idiosyncratic shock. I model the farmer’s discrete choice problem as a logit. In Assumption

1 I formalize it.

Assumption 1 The vector of land unobservables {εFi , {εci}c∈C} has the joint cumulative

distribution given by

exp

[
−e−εFi −

∑
c∈C

e−εci

]

It will be useful to denote by πc
o and πF

o Expressions 5 and 6 free of the idiosyncratic

shock. Then, with Assumption 1, the probability of choosing land use j ∈ {C,F} at location

o is given by:

Po(j) =
eπ

j
o(Ho,.)∑

n∈{C,F} e
πn
o (Ho,.)

(7)

Lastly, it will be useful to rewrite the returns net of the forest return, so that the choice

probability for forest can be written as:

Po(F ) =
1

1 +
∑

c∈C eπ
c
o(Ho,.)−kf−ξFo

(8)

Given my specifications, Expression 8, which is the probability that a farmer will not use

their land for agricultural activities, depends on land use choices of other farmers through

the Ho term. That is, a farmer’s decision depends on other farmers’ decisions. I now turn

to a characterization of the equilibrium in this economy with endogenous climate.

2.2 Land use and climate in equilibrium

Land use depends on climate, and climate depends on land use. Integrating the land use

model and the climate model amounts to solving a fixed point problem, that is, finding a

land use that is consistent with the climate generated by it.

To translate the land use decision of the discrete choice model to the deforestation scenario

of the climate model, let P (F ) denote the vector of probabilities for all plots of land where

each entry is given by Po(F ), that is, the probability of location o having forest (Expression

8). I interpret ho as Po(F ), that is the measure of forest cover in the climate model is the
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probability of forest cover in the land use model. This allows me to map forest probabilities

into forest probabilities, that is, P (F ) depends on P (F ). Formally, I can define a map

M : P (F ) → P (F ) as:

P (F ) = [P1(F ), . . . , PN(F )]

=

[
1

1 +
∑

c e
πc
1−kf−ξF1

, . . . ,
1∑

c 1 + eπ
c
N−kf−ξFN

]
= MP (F )

A fixed point of the map M can be interpret as a Nash equilibrium of this economy,

where actions are deforest and not-deforest and mixed strategies are allowed. In equilibrium

a farmer chooses their best possible land use given the land use choices of all the other

farmers. The existence of such an equilibrium is a straightforward application of Kakutani’s

fixed point theorem. That is because the correspondence M maps the set [0, 1]N to itself and

the map is smooth. This is the advantage of using a discrete choice model in this application,

the probabilities guarantee the compactness of the domain and the image and the functional

form for the choice probabilities guarantees the necessary smoothness of the map. I formalize

this in the next lemma.

Lemma 1 Existence of Equilibrium

Let P = [0, 1]N be the closed N-dimensional unit cube. Suppose M : P → P is a

correspondence defined by M(P ) = [P1(P ), P2(P ), . . . , PN(P )], where each Po : P → [0, 1] is

a continuously differentiable function mapping P into the closed interval [0, 1]. Then M has

a fixed point.

Proof. By Kakutani’s fixed point theorem, a correspondence M : P → P has a fixed point

if:

1. P is a non-empty, compact, and convex subset of a Euclidean space,

2. M is upper semi-continuous,

3. M(P ) is non-empty, compact, and convex for each P ∈ [0, 1]N .

In this case, P = [0, 1]N is a compact and convex subset of RN , satisfying the first con-

dition. Each function Po is continuously differentiable, ensuring continuity and hence the

upper semi-continuity of the correspondence M . Finally, since M(P ) consists of compact
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convex sets within [0, 1]N (by continuity of the Po functions), the images ofM are non-empty,

compact, and convex. Thus, by Kakutani’s fixed point theorem, there exists P ∗ ∈ P such

that P ∗ ∈ M(P ∗).

The first lemma proves the existence of equilibrium, but in principle there could be many

equilibria. Uniqueness of the equilibrium is more complicated and it will depend on the effect

that each location has on other locations, that is, it will depend on the model’s parameters.

I formalize this condition in the next lemma.

Lemma 2 Sufficient condition for the uniqueness of the equilibrium

Let ᾱ = maxc{αc}. If 1
1−θ

ᾱ
4

< 1, then the correspondence M : P (F ) → P (F ) is a

contraction map, has a unique fixed point (equilibrium), and this fixed point can be found by

iterating M starting from any initial point.

Proof. I start with the partial derivative of Po(F ) with respect to Pj(F ). This derivative

is either zero, if j is not on the back trajectory of i (j /∈ Bi) or is given by:

∂Po(F )

∂Pj(F )
= −θs(o,j)Po(F )

∑
c αce

πc
o

1 +
∑

c e
πc
o

Let ᾱ = maxc{αc}, then I can bound the absolute value of the derivative as:

∣∣∣∣∂Po(F )

∂Pj(F )

∣∣∣∣ ≤ ∣∣∣∣−θs(o,j)Pi(F )

∑
c αce

πc
o

1 +
∑

c e
πc
o

∣∣∣∣ ≤ ᾱ
∣∣θs(o,j)Po(F )(1− Po(F )

∣∣ ≤ θs(o,j)ᾱ

4

By the mean value theorem,

|Po(F |Pj(F ))− Po(F |P ′
j(F ))| ≤ θs(o,j)ᾱ

4
|Pj(F )− P ′

j(F )|

A change in Pj(F ) will have an effect on Po(F ) but also on all other locations that are

on the path of the trajectory that crosses location j. For locations that are not on this

trajectory the effect is zero and the inequality above will always be true. As each location

is, by construction, one step farther than the other and
∑∞

s=1 θ
s = 1/(1− θ) I can write:

∑
o

|Po(F |Pj(F ))− Po(F |P ′
j(F ))| ≤ 1

1− θ

ᾱ

4
|Pj(F )− P ′

j(F )|

This is the bound on the effect of location j on all locations of the economy. With this

inequality I can bound the total change in map M using the triangular inequality as:
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|MP −MP ′| ≤|M [P1, P2, ..., PN ]−M [P ′
1, P2, ..., PN ]|+

|M [P ′
1, P2, ..., PN ]−M [P ′

1, P
′
2, ..., PN ]|+

...

|M [P ′
1, P

′
2, ..., PN ]−M [P ′

1, P
′
2, ..., P

′
N ]| ≤

1

1− θ

ᾱ

4

∑
j

|Pj(F )− P ′
j(F )|

Thus, if 1
1−θ

ᾱ
4
< 1, I have

|MP −MP ′| < Θ|P − P ′|, with Θ < 1

That is, if 1
1−θ

ᾱ
4
< 1, the map M is a contraction, there exists an unique fixed point

(equilibrium) and I can find it by iterating the map M starting from any initial point.

Lemma 2 provides a sufficient condition for the uniqueness of equilibrium. This condition

is intuitive: the externality effect of an individual’s decision cannot be too strong, a condition

that can be tested after estimating the model’s parameters. Furthermore, this condition

relates to more general results concerning Nash equilibrium in networks and the necessity of

weakness of externality (Bayer et al., 2023).

My model is static, so that the economy jumps between equilibria. But, mathematically,

the contraction map is also a result showing the convergence to an equilibrium through a

learning process among agents. The contraction map shows that if each agent updates its

decision based on what other agents are doing, an unique equilibrium will eventually be

reached.3 This finding is noteworthy because, even tough there exists some general results

on the convergence of best-responses to a Nash equilibrium in networks with reciprocal links

(Bramoullé et al., 2014), the same is not true when interactions are not reciprocal (Bayer

et al., 2023). In my model, interactions are not reciprocal: the network of externalities

is determined by atmospheric circulation, which resembles a directed acyclic graph. As

demonstrated in Bayer et al. (2023), such settings can create best-response cycles, rendering

the Nash equilibrium a questionable equilibrium concept. However, this issue does not arise

in my model.

3It is easy to think of settings where there is no best-response convergence to the equilibrium. The game
of rock-paper-scissors is a simple example.
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3 Application

For an application of the model, I focus on the importance of protecting Indigenous Territo-

ries in the Amazon for the agricultural sector of the Brazilian state of Mato Grosso. Figure

2A shows the location of the rainforest and of the state of Mato Grosso.

Mato Grosso is one of the most important agricultural hubs in the world, being responsible

for 10% of the global production of soybeans. This achievement was made possible by the

introduction of new agricultural techniques that expanded the application of double cropping

(Bustos et al., 2016; Xu et al., 2021). Double cropping refers to a farming practice where

two harvest seasons occur in the same year. In Mato Grosso, this typically involves planting

soybeans followed by a mid-season corn crop. Another significant agricultural activity in the

state is cattle ranching, which corresponds to almost 40% of land use.

I work with data from 2008 and 2017, a stable period in regulatory framework of land

use in Brazil (see Burgess et al. (2019)). To estimate the model, I exclude observations

inside protected areas, e.g., conservation units and Indigenous land. These protected areas

are under a different regulatory framework than other regions and have significantly less

deforestation. Figure 2B shows the locations of protected areas. With this selection of

locations, the estimation of the land use model yields parameters that govern the decisions

of agents on private land. Later, in my counterfactual exercise, I allow agents to act on

Indigenous Territories as if they were in private land, effectively rolling back the protection

status of these territories.

3.1 Data.

I work primarily with two types of data: high-resolution land use data and lower-resolution

climate data. I interpret a pixel of land use data (with approximately 250 meters resolution)

as a farm indexed by i in the model and a pixel of climate data (with approximately 25

kilometers of resolution) as a location indexed by o in the model. Below I describe each data

set separately.

Land use

For this application, the set of available agricultural activities (C) includes growing cash

crops and using land for pasture grazing. I define C = {double, single, pasture} for the

choices of double cropping (soybeans and corn), single cropping (soybeans), and pasture

grazing.
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Figure 2: These maps show: (A) the location of the Amazon rainforest and of the Brazilian state of Mato
Grosso; (B) the location of the Xingu Indigenous Territories, in dark green, and remaining protected areas,
in light green, within and around Mato Grosso.

Land use data is from Simoes et al. (2020). The data classifies land use from 2001

to 2017 for pixels of 250-meter resolution for the Brazilian state of Mato Grosso, but I

focus only on the years 2008 and 2017 to take a long difference during this stable period

of regulatory framework. Importantly, the construction of this dataset uses information

throughout the year to build the land use classification algorithm, allowing it to identify

double cropping. That is, it identifies whether the same pixel had two harvests in the same

year. For Mato Grosso, double cropping consists of soybeans followed by corn. Furthermore,

the data identifies single cropping (soybeans), forest, and pasture areas. Figure A.1 in the

Appendix shows the land use data.4. For every location o, I compute the share of land use

pixels classified as single, double, pasture, or forest for the years of 2008 and 2017.

One empirical problem is that I end up with many pixels where the share of one type of

land use is zero, which cannot be used in my estimation of the land use model due to the

logarithmic transformation. There are various ways to address this issue, such as smoothing

4I collapse some of the land uses present in the data. Soybeans and millet is collapsed into single cropping,
since millet is a intercrop option generally not sold but instead used to avoid leaving the soil bare. I also
collapse cotton and sugarcane as single cropping since they represent a very small proportion of crops. Other
double cropping systems in the data, such as soybeans-cotton and soybeans-sunflower, are also a very small
proportion (< 1%) of the data. I just collapse them to double cropping together with soybeans-corn. I do
not distinguish between wetland, rainforest, cerrado and secondary vegetation in the choice set, defining all
these categories as the choice F . Finally I drop observations of urban areas and water.
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the probabilities in space (Scott, 2014) or using a partial identification approach (Lima,

2024). I opt for the most straightforward and transparent solution: when estimating the

land use model, I restrict my sample to pixels with positive shares for all choices and years.

Figure A.2 in the Appendix shows the three types of pixels I use in this paper: pixels in

private land with zero shares, pixels in private land with only positive shares (used in my

estimation of the land use model), and pixels in protected areas.

Climate.

Climate variables are: rainfall, temperature, and the upwind forest.

Rainfall and temperature. Average annual rainfall and temperature data by location

is from Copernicus (2017). I collect climate data from 1985 to 2018 at the resolution of 0.25◦

(approximately 25 kilometers).

Back Trajectories of Atmospheric Transport. To build the back trajectory of

atmospheric transport, I use monthly wind data from 1985 to 2018 (Copernicus, 2017), also at

the resolution of 0.25◦. This dataset provides a velocity vector (u-component, v-component,

and vertical velocity) across time, latitude, longitude and pressures levels (altitude). I depart

from Spracklen et al. (2012) by using the prevailing winds of each month-year as my data

for the velocity vector, instead of hourly data. This approach allows me to use a longer

panel when estimating the impact of upwind forest on climate outcomes. The resolution of

the data is kept at the native resolution of 0.25◦ instead of using the resolution of 1◦ as in

Spracklen et al. (2012). Given a month, a year, and a starting point of interest, the back

trajectory is computed using Expression 1. I set the time window of the back trajectory to

5 days and the initial pressure level to 800hPa as in Spracklen et al. (2012).

The back trajectories are computed for endpoints in the state of Mato Grosso, as this is

the region where I want to model the climate effect. The back trajectories themselves can

span across all South America. Figure 3 shows a sample of different back trajectories.

Upwind forest. Spracklen et al. (2012) uses a Leaf Area Index (LAI) as a forest cover

measure, my ho variable. To better align the data with my model, I use binary forest data

of forest cover, which has the advantage of being consistent with the outputs of the land use

model. I set my forest cover measure ho for location o equal to the proportion of pixels in o

classified as forest. Forest pixel data are from Mapbiomas 5, which classifies land use for the

entire Amazon from 1985 to 2018 at a resolution of 30 meters. I create a map where pixels

classified as forest are assigned a value of 1, while non-forest pixels are assigned a value of

5Available at www.amazonia.mapbiomas.org
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Figure 3: This figure shows a sample of 400 5-days trajectories that arrive at some locations in Mato
Grosso.

0, and then apply an average filter to match the resolution of the Copernicus (2017) data to

compute ho.

Although I use binary forest data (forest or deforested), the high resolution provides

significantly more granularity compared to LAI data available at 5 km resolution (Lemieux

and Luquire, 2021) 6. Note, even though the forest data is binary, the required aggregation

process for the climate model generates a continuous variable of forest cover status. I set θ,

the parameter governing the weight of upwind forest by distance, to θ = 0.99. This choice

closely mirrors Spracklen et al. (2012) – which does not weight distance – while providing a

straightforward approach to ensure that deforestation in one location does not produce an

indefinite significant cascading effect.7

For every location o, I compute the average annual rainfall and temperature, and upwind

6For comparison: a single pixel of 5 kilometers contains around 28,000 pixels of 30 meters.
7One way to validate this calibration is by examining the fraction of precipitation originating in the

Amazon for different regions in South America. Regions located in the southern part of the conti-
nent—approximately 2,500 to 3,500 km from the center of the forest—derive between 5% and 15% of their
rainfall from the Amazon (see Costa et al. (2021) and Zemp et al. (2014) for a review). In contrast, regions
within the Amazon receive around 50% of their rainfall from local forest sources. Such observations would
not be possible with θ < 0.98, as the distance decay would be too strong. It is also worth noting that larger
values of θ make it more challenging to satisfy the sufficient condition in Lemma 2 for contraction. By se-
lecting θ = 0.99, I aim to strike a balance: this choice is conservative in terms of the theoretical implications
while remaining consistent with empirical observations.
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forest.

Additional variables.

Transportation cost data is from Araujo et al. (2020). This dataset combines: (1) a

transportation network encompassing paved and unpaved federal and state roads, waterways,

and ports; (2) freight cost data. This data is used to build an application that computes

the transportation cost from each location in my data and the most cost-effective port with

access to international markets. Soil data are from the Brazilian Agricultural Research

Corporation. This comprises the best available data on soil for the entire country, with

high-resolution classification of 40 soil types,developed through field observations and expert

classifications.8. Finally, terrain slope data is from Jarvis et al. (2008). For each location o,

I compute the average transportation cost, slope, and share of each soil type.9

3.2 Estimation, Identification and Results.

Rainfall and Temperature Effects.

I begin by establishing that upwind forest indeed causes more rainfall and milder tem-

peratures. This is an important step to show that the variation of upwind forest indeed

operates through the effects on climate, since in the land use model upwind forest enters in

a reduced form way.

As I have yearly panel data on rainfall, temperature, and upwind forest – from 1985 to

2018 – the empirical analog of Expressions 3 and 4 are given by:

Roy = γo + γy + γRHo +Xoyβ + ϵoy (9)

Toy = γ′
o + γ′

y + γTHo +Xoyβ
′ + εoy (10)

Where y denotes year, γo and γy are location and year fixed effects, and Xoy denotes

controls. Specifically, I control for total distance of the back trajectory within continental

land, accounting for the fact that longer trajectories will mechanically have higher upwind

8At the most aggregated level the data has soils classified in Alisol, Argisol, Acrisol, Cambisol, Chernozem,
Spodosol, Gleysol, Latosol, Luvisol, Neosol, Nitisol, Organosol, Planosol, Plinthosol, Vertisol

9Why don’t I use the FAO GAEZ data on crop suitability? The FAO data combines soil and climate
information, meaning that climate variables are already embedded in their crop suitability measure. As
a result, attempting to estimate the impact of upwind forest while holding the FAO suitability measure
constant would be conceptually inconsistent. I also note that the soil data I use provides greater detail than
the FAO GAEZ soil data.
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forest. In this specification the variation identifying the parameters is a combination of year-

to-year changes in deforestation and atmospheric trajectories. However, unobserved factors

could still affect both deforestation and climate outcomes. Although the variation inHo relies

on long trajectories (primarily reflecting deforestation far from location o), there remains a

possibility of reverse causality. To address this, I create an instrument for the upwind

forest. By fixing the forest cover scenario in 1985 (the first year of data) and calculating

upwind forest each year based only on changes in atmospheric trajectories, I ensure that the

instrument is exogenous to deforestation.

It is important to understand the source of the correlation between upwind forest and

potential upwind forest. The sign of this correlation is determined by two opposing forces:

(1) cross-sectional variation which increases the correlation, as more potential upwind forest

implies greater general exposure to the forest (2) temporal variation which decreases the

correlation, as more potential upwind forest implies that deforestation throughout the years

will have a higher impact on changes of upwind forest. Consequently, in a specification with

fixed effects, the correlation between upwind forest and potential upwind forest can be either

positive or negative, depending on the time window used for estimation, which determines the

dominant force. Regardless, the variation in the instrument itself is driven solely by changes

in atmospheric circulation. Additionally, established mechanisms linking transpiration and

humidity transport (Salati et al., 1979; Spracklen et al., 2012) support a causal interpretation

of my estimates. Additionally, established mechanisms linking transpiration and humidity

transport (Salati et al., 1979; Spracklen et al., 2012) support a causal interpretation of my

estimates.

Table 1 shows the results for rainfall and temperature. Upwind forest has a positive effect

on rainfall, as shown in columns (1) and (2). The difference between the OLS and the IV

estimates suggests a potential downward bias in the OLS estimates, with the IV estimate

being more than 3 times greater than the OLS estimate. Quantitatively, a one standard

deviation increase in upwind forest increases average rainfall by 10% [12.72 × 0.0412/4.77].

Additionally, a one standard deviation in upwind forest accounts for 60% of the standard

deviation of rainfall [12.72 × 0.0412/0.88], a figure in line with typical estimates of the

proportion of rainfall attributed to forest cover (Zemp et al., 2017). Table 1 also shows that

the average temperature in Mato Grosso has a low standard deviation. This stability is one

reason for the region’s high agricultural productivity. However, I still estimate a precise

effect of upwind forest on temperature. Quantitatively, a one standard deviation increase in

upwind forest reduces temperatures by 0.12◦C.

Having established that upwind forest indeed impacts rainfall and temperature in a sig-

nificant way, I now turn to the estimation of land use decisions.
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Table 1: Upwind Forest on Rainfall and Temperature

OLS IV OLS IV
Precipitation (mm) Temperature (◦C)

(1) (2) (3) (4)

Upwind forest 0.0119*** 0.0412*** -0.0061*** -0.0096***
(0.0012) (0.0014) (0.0006) (0.0019)

First-stage

Upwind constant forest 0.8931*** 0.8931***
(0.0025) (0.0025)

F stat 48,221 48,221

Year FE ✓ ✓ ✓ ✓
Pixel FE ✓ ✓ ✓ ✓
Land ✓ ✓ ✓ ✓

Observations 39,732 39,732 39,732 39,732
Cluster 1,204 1,204 1,204 1,204

Mean Dep. 4.77 4.77 25.36 25.36
Std Dep. 0.88 0.88 0.88 0.88

Mean Ind. 28.97 28.97 28.97 28.97
Std Ind. 12.72 12.72 12.72 12.72

This table shows the estimates of Expressions 9 and 10. All specifications include location and year fixed
effects, and control for upwind exposure to continental land (length of the trajectory within continental

land). Columns (1) and (3) show OLS estimates of upwind forest on rainfall and temperature. Columns (2)
and (4) show IV estimates of upwind forest on rainfall and temperature, where the instrument is the
upwind forest fixing forest cover in 1985. The ’Upwind constant forest’ row shows the results of the

first-stage, that is a regression of the upwind forest on upwind forest with forest as 1985. Standard errors
are clustered at the location level. The bottom four rows shows descriptive statistics of the dependent

(rainfall and temperature) and independent (upwind forest) variables. *** p-value < 0.01
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Land Use Decisions.

To estimate the parameters that govern land use decisions, take the logarithm of Expres-

sion 7 and use the forest choice as the outside option to obtain the usual regression from the

discrete choice model:

log
Po(c)

Po(F )
= αcHo +Xoβc − kf + ξco − ξco (11)

As my model is static but I have panel data, some adaptations are necessary. I use data

on land use for the years of 2008 and 2017. The idea is to take long differences since I am

not investigating the impact of weather on land use decisions but rather of climate. One

adaptation is to allow Ho to be measured as the cumulative upwind forest within a given

interval. Specifically, I measure Ho in 2017 as the average upwind forest between 2009 and

2017 while I measure Ho in 2008 as the average upwind forest before 2008. The rationale is

that it is the upwind forest of the entire past that determines the land use decision I observe

today, such that changes in land use decisions are determined by changes in upwind forest

during the time frame in which I measure land use changes.

The main parameters of interest are the αc parameters - one for each agricultural choice

- which capture the effect of upwind forest on the return of each land use choice. It is

difficult to argue that this specification can be estimated by OLS, as it may also suffer from

reverse causality and the upwind forest could be correlated with various unobservables. For

example, locations in the core of the forest are likely to have a higher upwind forest but

are also more isolated, with less infrastructure. One possible approach is to model these

factors, as in Araujo et al. (2020) and Domı́nguez-Iino (2021). I take a different approach

and estimate my model in two stages. First, I take long differences to deal with fixed factors

and build an instrumental variable to estimate αc. Second, once αc is estimated, I select and

estimate the remaining factors using a predictive approach. I further discuss the rationale

and implications of this approach as I present the results. Taking first differences I arrive at:

∆ log
Po(c)

Po(F )
= αc∆Ho + ξ̃o︸︷︷︸

∆Xoβc+∆ξco

(12)

The first difference already eliminates all factors that are constant over time. This in-

cludes, for example, soil characteristics, and within our ten-year window (2008 to 2017), this

also includes transportation cost. But of course there could be other factors contained in ξ̃o

that may correlate with the upwind forest measure and affect land use decisions. To resolve

this identification problem, I need an instrument. The instrument I build is the same as the

one used in the climate model, that is, it is the potential upwind forest derived from the
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annual atmospheric trajectory variation while holding deforestation constant as of 1985, the

first year for which I have data. This does not imply that I am using similar variation to

estimate two different mechanisms; rather, the climate model was estimated to show that

the mechanism I propose - that of upwind forest affecting climate - is indeed the mechanism

through which upwind forest can affect land use decisions.

Table 2 shows the results of this estimation. With four possible land use choices - pasture,

single cropping, double cropping, and forest - I estimate 3 coefficients (αpasture, αdouble, αsingle).

The coefficient for the pasture choice is largely insignificant, that is, changes in climate do

not affect the return of pasture. This is expected given the resilience of cattle and the fact

that pasture grazing in Brazil is a low-productivity activity, averaging around one cattle head

per hectare, which is well below the support capacity of pastureland in Brazil (Strassburg

et al., 2014). The other two parameters are positive and statistically significant, showing

that the return of single and double cropping increase with higher upwind forest. The IV

coefficients are significantly greater than the OLS coefficients, showcasing that unobservable

factors - such as the core versus edge of the forest dynamics - may significantly bias the

estimates.

In the estimation, I include a constant and upwind exposure to continental land (length

of the trajectory within continental land). I do not control for climate variables since, as

established by the climate model results, they are bad controls (Cinelli et al., 2024). The

remaining variables identified as important in the literature, such as soil and transportation

cost, are eliminated by first differencing the regression. What could invalidate my results is

the existence of some unobservable factor that simultaneously affect land use decisions and

atmospheric circulation. However, atmospheric circulation is determined by temperature

differences between the Equator and the Poles and the rotation of the Earth (the Coriolis

effect), that is, it is exogenous that what happened in my study area between 2008 and

2017.10

Establishing the causal effect of upwind forest on land use decisions is not enough to

understand counterfactuals. This is because of two additional challenges: first, each αc gives

a ceteris paribus effect, and we know from the model that farmers will re-optimize, arriving at

a new land use equilibrium after a change in upwind forest; second, the level of the returns

(πc
o) matters for the counterfactual given the functional form of the choice probabilities.

Thus, I need to recover the remaining factors that determines land use returns. With αc

10There is a study on how the rainforest can affect atmospheric transport: The Biotic Pump Theory
(Makarieva and Gorshkov, 2007) approaches this question from a theoretical perspective. As far as I know,
this theory is not a consensus because it lacks empirical evidence. Nonetheless, the Biotic Pump Theory
would apply in a context of extensive deforestation, and therefore, even if it were true, it is unlikely to have
an effect in my setting.
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Table 2: Upwind Forest on Land Use

OLS IV
log ratio of probabilities

(1) (2)

Upwind forest
pasture -0.0015 -0.0044*

(0.0009) (0.0026)

double 0.0058* 0.0496***
(0.0036) (0.0077)

single 0.027*** 0.0708***
(0.0039) (0.0084)

Observations 1,428 1,428
Clusters 1,428 1,428

First stage

∆ Upwind forest constant -1.488***
(0.093)

F stat 71
Observations 476
Clusters 476

Length ✓ ✓
This table shows the estimates of Expression 12. All specifications include a constant and control for

upwind exposure to continental land (length of the trajectory within continental land). Column (1) shows
OLS estimates of upwind forest on the log of probabilities ratio. Columns (2) shows IV estimates of

upwind forest on the log of probabilities ratio, where the instrument is the upwind forest keeping forest
cover constant at 1985. Standard errors are clustered at the location level, which in this case of

first-differences, is the heteroskedastic robust standard error. p-value *** < 0.01, * < 0.05, * < 0.1.
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estimated, denoted by α̂c, I rewrite my regression as:

log
Po(c)

Po(F )
− α̂cHo = Xoβc − kf + ξco − ξco (13)

One approach would be to explicitly model the right-hand side as in Araujo et al. (2020)

and Domı́nguez-Iino (2021). This is usually done using some measure of crop suitability -

most commonly the FAO GAEZ data - which would keep fixed climate conditions and thus is

not suitable for my setting. For my counterfactual, the parameter of interest is αc, while the

other parameters βc are used only to determine the initial level of the choice probabilities,

that is, I am not interest in any particular parameter within βc. Therefore, my approach is

a predictive one: within a set of possible variables, I select those with the best out-of-sample

fit, that is, the model that best predicts log Po(c)
Po(F )

− α̂c out of sample. This approach limits

the counterfactuals I can perform to those related to Ho, but that is precisely the main point

of this paper.11

In this predictive step, I use data for 2017, as it is the last year of the data and represents

the equilibrium I will perturb in my counterfactual. I split my sample by location into 5 folds

to assess the predictive power of the model through a 5-fold cross-validation exercise. The

variables that performed best in this exercise were latitude and longitude, transportation

cost, terrain slope, and the share of nine different types of soil. The average out-of-sample

R2 across the five folds is 0.97, indicating very high predictive power and highlighting that

this simple model effectively distinguishes different probabilities of land use choices. Table

A.1 in the Appendix shows the coefficients of the predictive model.

I can now proceed to my counterfactual exercise.

3.3 Counterfactual: Deforesting the Xingu

The Indigenous Territories of the Xingu basin (Figure 2), located within the Amazon Basin

in Brazil, represent one of the earliest initiatives in indigenous land protection.12. The

Indigenous Park of Xingu, a portion of the basin, was established in the 1960s as Brazil’s

first indigenous territory. The creation of the Xingu Park marked an important moment

in Brazil’s history, as it set a precedent for the protection of indigenous lands and cultural

heritage in the Amazon, leading to the establishment of other indigenous territories across

11An alternative approach would be factor models, allowing for interactive fixed effects (Moon and Wei-
dner, 2015). Unfortunately, this approach does not fit well in my application because I need to be able to
extrapolate the parameters from a set of pixels (private land) to another set of pixels (those on the Xingu),
and I cannot extrapolate fixed effects.

12This region encompasses the territories of Kayapó, Baú, Menkragnoti, Badjônkôre, Panará, Terena Gleba
Iriri, Kapôt, Nhinore, Capoto/Jarina, Wawi, Xingu, Batovi, and Pequizal do Naruvôtu.
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the region. The Xingu Indigenous Territories spans around 141 thousand square kilometers,

home to more than 30 indigenous groups, including isolated tribes.

Despite its historical significance and legal protections, the Xingu Indigenous Territories

face mounting threats that endanger both the environment and the indigenous communities

residing there. Degradation driven by illegal logging and gold mining, and edge deforestation

driven by agriculture and cattle ranching, continues to encroach upon the territory, heavily

impacting indigenous welfare and the environment. Additionally, projects such as hydroelec-

tric dams and highway construction pose risks to the ecological balance and the traditional

livelihoods of Xingu’s indigenous peoples.

In my application, I generate a scenario where the Indigenous Territories of the Xingu

River Basin would be opened to deforestation and the expansion of the agricultural frontier.

Specifically, I simulate a scenario where the protection status of the territory is rolled back.

To do this, I apply the estimated coefficients from data on private land to the Xingu region to

generate a counterfactual deforestation scenario in the territory. Leveraging the contraction

result of Lemma 2, I use the following algorithm to derive a new equilibrium for this economy:

1. Set initial choice probabilities – in my specific application I set probabilities as those

fitted by the model, with pixels inside Xingu having forest probability of one

2. Perform a counterfactual exercise that will change choice probabilities – in my specific

application, I change the choice probabilities of pixels inside the Xingu from 1 to the

fitted probabilities from the model

3. Compute the change in upwind forest caused by the change in choices probabilities

4. With the new upwind forest compute new choice probabilities

5. If old and new choice probabilities are equal, stop; otherwise return to step 3.

After rolling back the protection status of the Xingu, 47% of its territory is converted

to agricultural land, equivalent to 66 thousand squared kilometers of deforestation. This

is already an equilibrium outcome, that is, after allowing for deforestation in the Xingu,

locations inside and outside the Xingu will adapt moving to a new equilibrium. This sub-

stantial deforestation in the Xingu has spillover effects on areas beyond its borders. Given

that changes in land use inside and outside of the Xingu are very different and to highlight

the externality effect, in the figures that follow I focus on the areas outside of Xingu.

Figure 4A shows the change in forest choice probability between the old and new equi-

librium. I interpret these changes as farmers abandoning agricultural activities. In total 10
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Figure 4: These maps show: (A) the change in forest choice probability between the two equilibria, I
interpret this increase in forest probability as farmers abandoning agricultural activities; (B) the change in
expected return between the two equilibria. Notice the stark spatial heterogeneity that is determined by
atmospheric circulation. Pixels in green represent areas within the Xingu, where values are omitted to better
display heterogeneity outside the Xingu region. Gray pixels indicate other protected areas.

thousand squared kilometers would be abandoned, but there is considerable spatial hetero-

geneity in the externality caused by upwind deforestation which is determined by atmospheric

circulation. Thus, the determination of winners and losers of a policy that rolls back the

protection status of the Xingu depends on patterns of atmospheric circulation. Notably, the

biggest losers in this scenario are located in the center of Mato Grosso, the most productive

region in the state. This exercise highlights the importance of the protection of the Xingu

for the economy of one of the most important agricultural hubs in the world.

To translate this change in forest probability into loss of returns, Figure 4B shows the

change in expected returns from land,13 which can be interpreted as a loss of land value.

The spatial heterogeneity is very similar, with the center of Mato Grosso losing between 10%

and 20% of expected return, that is between 10% and 20% of of land value.

Ending the protection status of the Xingu has substantial effects on regional land use,

which in turn affects climate. Figure 5 shows these impacts on rainfall and temperature

in the new equilibrium. Some locations in northern of Mato Grosso, those closest to the

Xingu, lose more than 1 mm of rainfall and face an increase in temperature of more than

0.3 ◦C, with some locations approaching a rise of 0.5 ◦C. These climate changes are the

mechanisms that drive the significant decline in expected land returns following extensive

13Given the structure of the model, expected return can be written as log
∑

n∈{C,F} e
πn
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Figure 5: These maps show the impact of the new equilibrium, after rolling back the protection status of
the Xingu, on rainfall (A) and temperature (B)

deforestation in the Xingu. Notice that the spatial patterns of the impacts in climate are

exactly the same, since the variation used to compute them is the same, that of changes in

upwind forest. That is why I use upwind forest directly as the main variable of interest in

the discrete choice model of land use.

Note that the regions experiencing the most significant climate impacts are not necessarily

those with the greatest changes in land value. A key mismatch appears when comparing

Figures 4 and 5, particularly in northern Mato Grosso. While the extreme north of Mato

Grosso faces substantial climate alterations, this area is less productive than the state’s

central region. Consequently, an identical climate change yields a larger impact on land

values in central Mato Grosso.

After removing Xingu’s protection status, 66,000 square kilometers of new agricultural

land enter the market, leading to climatic changes that reduce rainfall and raise tempera-

tures. This environmental shift causes a substantial portion of previously productive land

— approximately 10,000 square kilometers — to be abandoned. What is the net result?

Naturally, this question must be approached with significant caveats. The net result

presented here does not account for additional externalities, which I discuss in Section 4,

nor does it consider the severe impacts that revoking Xingu’s protection would impose on

Indigenous communities. Instead, this result is constrained to the agricultural sector and

the flying rivers mechanism alone. Nevertheless, such an exercise is valuable as it provides a

lower bound on the bias that could arise if a researcher overlooks the endogeneity of climate

in land-use policy counterfactuals.
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Summing the increase in expected return within the Xingu region with the decrease in

expected return outside the Xingu reveals that the externality offsets 40% of the increase

in expected return from newly available land in the Xingu. That is, the decrease in ex-

pected return outside the Xingu equals 40% of the gain inside hte Xingu. Thus, ignoring

climate endogeneity leads to a substantial overestimation of the benefits of deforestation, or

equivalently, a severe underestimation of its costs.

I have emphasized that the economics literature on deforestation has largely overlooked

the endogeneity of climate. In contrast, the natural sciences have addressed this endogeneity,

but typically lack a framework for modeling human behavior, which limits discussions on

adaptation. In my model, adaptation occurs through land use choice, allowing shifts such as

moving from soybeans to pasture grazing, as pasture is less sensitive to climate variability

(see Table 2).

To evaluate the importance of considering adaptation, I compare, for locations outside

the Xingu, a weighted return of land in the new equilibrium
∑

n∈{F,C} Po(n)(π
n
o + γ) with

a weighted return of land where returns are as in the new equilibrium but farmers’ choices

remain as in the old equilibrium
∑

n∈{F,C} P
old
o (n)(πn

o + γ).14 This comparison allows me to

compute the loss a farmer would incur if they deviated from optimal behavior and retained

their original land use decision. The sum of utilities in the scenario without adaptation is

9% lower than in the scenario with adaptation. Such an aggregate effect, nonetheless, mask

important spatial heterogeneity. Figure 6 presents the distribution of weighted returns under

these two scenarios, with and without adaptation. Since returns are measured in utilities,

which are difficult to interpret directly, I normalize the weighted returns by the standard de-

viation in the old equilibrium. Adaptation significantly impacts the distribution of weighted

returns in the economy, particularly the lower tail. Therefore, a model that accounts only

for changes in climate to mechanically compute changes in agricultural productivity would

likely overestimate the adverse impacts of deforestation.

4 Caveats

As with any research paper, mine has limitations. Below I summarize the ones I find most

important and most promising for future research.

Other effects of deforestation. My model does not consider other externalities of

deforestation besides the rainfall/climate mechanism and thus is not suitable to be used as

a stand-alone approach for cost-benefit analysis of deforestation. An important externality

14γ is the Euler–Mascheroni constant.
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Figure 6: This figure shows two distributions of weighted returns. The white distribution, given by∑
n∈{F,C} Po(n)(π

n
o + γ), represents the weighted return considering both returns and optimal choice

probabilities in the new equilibrium after the deforestation in Xingu. The gray distribution, given by∑
n∈{F,C} P

old
o (n)(πn

o + γ) represents the weighted return considering returns as in the new equilibrium
after the deforestation in Xingu but holding choice probabilities fixed as in the old equilibrium. The differ-
ence between these two distributions shows the importance of accounting for adaptation.

of deforestation is the release of greenhouse gases. The 66 thousand square kilometers of

deforestation in the counterfactual Xingu region is equivalent to the emission of 3.2 billion

tons of CO2. With a very conservative social cost of carbon of US$5 ton/CO2, this amounts

to US$ 16 billion of externality cost.15 The same mechanism of deforestation affecting

climate has effects on the energy sector as well, since hydropower energy is the main source

of electricity in Brazil (see Araujo (2024)). The forest fragmentation in the Xingu in the

counterfactual scenario could cause an abrupt decrease in biodiversity (Ferraz et al., 2003),

generating a cost that economics is still struggling to measure. Deforestation makes extensive

use of fires and thus creates pollution that affects human health (Rangel and Vogl, 2019;

Rocha and Sant’Anna, 2022). Deforestation is also connected with illegal activities, violence,

and conflict (Chimeli and Soares, 2017; Fetzer and Marden, 2017).

Dynamics. The deforestation literature presents static models both with cross-sectional

(Souza-Rodrigues, 2019) and panel data (Domı́nguez-Iino, 2021), estimated dynamic models

(Scott, 2014; Araujo et al., 2020; Sant’Anna, 2021) and calibrated dynamic general equilib-

rium models (Farrokhi et al., 2023). Dynamic models of land conversion, that nest static

15The value of 48,510 converts deforestation in km2 to released tons of CO2 (Technical Note nº 2093/2018-
MMA from the Amazon Fund). US$ 5 ton/CO2 is the carbon cost considered in the same note and used in
the Amazon Fund.
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models, show that dynamics lead to higher elasticities of deforestation (Scott, 2014; Araujo

et al., 2020), but I cannot derive whether this would still be true in a setting with externali-

ties, since a no spillover assumption is necessary to get rid of expectations in the estimation

step proposed by Scott (2014). Additionally, multiplicity of equilibrium is likely to be a

problem in such a setting. An important next step is to understand whether the contraction

result presented in this paper can be extended to dynamic settings.

Tipping points. It has been hypothesized the existence of a point of no return in Ama-

zon deforestation, that is, a level of deforestation from which the rainforest cannot create the

humidity necessary for its own stability (Nobre et al., 1991; Sampaio et al., 2007; Gatti et al.,

2021; Araujo et al., 2023; Flores et al., 2024). With a potential abrupt forest dieback, any

model that does not account for it will largely underestimate the cost of deforestation. This

is connected with the discussion on dynamics in the previous paragraph, but more compli-

cated, since to incorporate tipping points it would be necessary to model expectations with

a unknown probability of an abrupt state transition. However, as long as the deforestation

in the counterfactual scenarios is not enough to trigger a tipping point, my model still offers

a way to quantify externality effects of deforestation.

5 Conclusion

In this paper, I develop a model of land use in which climate is endogenous, focusing on

changes in rainfall patterns caused by deforestation. I derive conditions for this model,

which features a network of externalities, to have a unique equilibrium. As an application, I

estimate the model with climate data from the Amazon Rainforest and land use data from

the Brazilian state of Mato Grosso, one of the most important agricultural hubs in the world.

Deforestation, as a result of land use expansion, causes a decrease in rainfall and an increase

in temperature, which in turn affects land use decisions. An integrated model allows me to

compute policy counterfactuals in an equilibrium setting, where land use choices and climate

are consistent with each other.

I then explore a counterfactual where farmers are allowed to produce and deforest in-

side the Indigenous Territories of the Xingu River Basin. Allowing farmers into the Xingu

region results in 66 thousand square kilometers of deforestation or 47% of the region. In

this counterfactual, precipitation in Mato Grosso would decrease by more than 1 mm, and

temperature would increase by more than 0.3 ◦C in the central and northern regions of

Mato Grosso. In a model without endogenous climate, all of these effects would be absent,

underscoring how far off are models that take climate as given. In such models, the costs of
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deforestation are severely underestimated. I also show that farmers’ re-optimization through

changes in agricultural activities is an important channel of adaptation. Ignoring these ef-

fects, as often done in the natural sciences, would lead to an overestimation of the costs of

deforestation through this mechanism of flying rivers. Thus, while economics has underes-

timated the costs of deforestation, natural sciences have overestimated it. The approach in

this paper offers a way to reconcile the knowledge that has been generated by both fields.

My results highlight a way to integrate the interaction of human behavior and the natural

environment into a single consistent model. The mechanism of deforestation affecting rainfall

and other climate outcomes has consequences for different regions – such as Africa, Southeast

Asia, and other parts of South America – and for different sectors – such as energy and water

supply for urban centers. Each one of these consequences is a topic for future research.
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A Appendix

Figure A.1: These maps show the land use for the Brazilian state of Mato Grosso in 2008
and 2017. “Double” refers to a double cropping option (such as soybeans follow by corn),
while “Single” refers to a single crop being produced (soybeans). Absent from the legend
are blue pixels representing water and hard-to-see gray pixels representing urban areas.
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Figure A.2: This map shows the three types of pixels in our sample. Protected areas (in green) are used
only in the counterfactual exercise and exclusively for the Xingu region. Private land (in white) with zero
shares is not used in the estimation of the land use model but is included in counterfactual exercises. Private
land without zero shares (in gray) is utilized in the estimation of the land use model and in counterfactuals.
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Interaction Variable Coefficient Std. Error

Pasture Latitude -2.986553 0.521394
Longitude -9.169095 1.628853
Transport -2.619496 0.733845
Soil type 4 -0.127466 0.500518
Soil type 2 -0.142535 0.313607
Soil type 8 -0.150005 0.312569
Soil type 1 0.800363 0.347370
Soil type 7 0.175827 0.903351
Soil type 6 0.067053 0.393952
Soil type 13 0.947076 0.431755
Soil type 14 1.022876 0.385188
Soil type 16 -0.197015 0.308865
Constant -8.170254 1.448852
Slope -0.044121 0.035454

Single Latitude -21.015847 1.225425
Longitude 217.887258 3.301841
Transport -10.695464 1.475721
Soil type 4 1.269284 0.999273
Soil type 2 -0.196944 0.696504
Soil type 8 -0.613393 0.755327
Soil type 1 0.123917 0.749057
Soil type 7 0.819978 2.007220
Soil type 6 -3.572608 0.839507
Soil type 13 1.719118 1.018191
Soil type 14 1.265170 0.821011
Soil type 16 1.921517 0.715305
Constant 163.985110 2.989359
Slope 0.072081 0.087876

Double Latitude -12.944141 1.273209
Longitude 136.871474 3.496011
Transport -12.545499 1.502797
Soil type 4 -1.331484 1.021071
Soil type 2 1.159280 0.763985
Soil type 8 0.418201 0.839774
Soil type 1 0.372551 0.882929
Soil type 7 -1.316028 2.226889
Soil type 6 -3.059022 0.975487
Soil type 13 -0.446595 1.040595
Soil type 14 1.615170 0.863284
Soil type 16 3.431285 0.785935
Constant 104.024958 3.121780
Slope 0.029780 0.109733

Table A.1: This table shows the coefficients of the predictive step of my estimation. The predictive step
has R2 from 5-fold cross-validation of 95%, but in this table I show the in-sample coefficients, which are the
ones used in my counterfactual exercise. Standard errors are clustered at the location level, which for this
exercise in the cross-section is the heteroskedastic robust standard error.

3


	Introduction
	Model
	Land use depends on climate
	Land use and climate in equilibrium

	Application
	Data.
	Estimation, Identification and Results.
	Counterfactual: Deforesting the Xingu

	Caveats
	Conclusion
	Appendix

